

TCA9545A Low Voltage 4-channel I²C and SMbus Switch With Interrupt Logic and Reset Functions

FEATURES

- 1-of-4 Bidirectional Translating Switches
- I²C Bus and SMBus Compatible
- Four Active-Low Interrupt Inputs
- Active-Low Interrupt Output
- Active-Low Reset Input
- Two Address Pins, Allowing up to Four Devices on the I²C Bus
- Channel Selection Via I²C Bus, In Any Combination
- Power Up With All Switch Channels
 Deselected
- Low R_{ON} Switches
- Allows Voltage-Level Translation Between 1.8-V, 2.5-V, 3.3-V, and 5-V Buses
- No Glitch on Power Up
- Supports Hot Insertion
- Low Standby Current
- Operating Power-Supply Voltage Range of 1.65 V to 5.5 V
- 5.5-V Tolerant Inputs
- 0 to 400-kHz Clock Frequency
- Latch-Up Performance Exceeds 100 mA Per JESD 78
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION

The TCA9545A is a quad bidirectional translating switch controlled via the I²C bus. The SCL/SDA upstream pair fans out to four downstream pairs, or channels. Any individual SCn/SDn channel or combination of channels can be selected, determined by the contents of the programmable control register. Four interrupt inputs (INT3–INT0), one for each of the downstream pairs, are provided. One interrupt (INT) output acts as an AND of the four interrupt inputs.

An active-low reset ($\overline{\text{RESET}}$) input allows the TCA9545A to recover from a situation in which one of the downstream I²C buses is stuck in a low state. Pulling $\overline{\text{RESET}}$ low resets the I²C state machine and causes all the channels to be deselected, as does the internal power-on reset function.

The pass gates of the switches are constructed such that the V_{CC} pin can be used to limit the maximum high voltage, which will be passed by the TCA9545A. This allows the use of different bus voltages on each pair, so that 1.8-V, 2.5-V, or 3.3-V parts can communicate with 5-V parts, without any additional protection. External pullup resistors pull the bus up to the desired voltage level for each channel. All I/O pins are 5.5-V tolerant.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TCA9545A

SCPS204 – JANUARY 2014

TEXAS INSTRUMENTS

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

TERMINAL CONFIGURATION AND FUNCTIONS

-	W PACI (TOP VI		_
A0 [A1 [RESET [SD0 [SC0 [SC1 [SC1 [GND]	1 2 3 4 5 6 7 8 9 10	20 19 18 17 16 15 14 13 12 11	V _∞ SDA SCL INT SC3 SD3 INT3 SC2 SD2
· · · · · · · · ·			Γ=

Terminal Functions

	NO.	
PW	NAME	DESCRIPTION
1	A0	Address input 0. Connect directly to V _{CC} or ground.
2	A1	Address input 1. Connect directly to V _{CC} or ground.
3	RESET	Active-low reset input. Connect to V _{CC} through a pullup resistor, if not used.
4	INTO	Active-low interrupt input 0. Connect to V _{CC} through a pullup resistor.
5	SD0	Serial data 0. Connect to V _{CC} through a pullup resistor.
6	SC0	Serial clock 0. Connect to V_{CC} through a pullup resistor.
7	INT1	Active-low interrupt input 1. Connect to V _{CC} through a pullup resistor.
8	SD1	Serial data 1. Connect to V _{CC} through a pullup resistor.
9	SC1	Serial clock 1. Connect to V _{CC} through a pullup resistor.
10	GND	Ground
11	INT2	Active-low interrupt input 2. Connect to V _{CC} through a pullup resistor.
12	SD2	Serial data 2. Connect to V _{CC} through a pullup resistor.
13	SC2	Serial clock 2. Connect to V_{CC} through a pullup resistor.
14	INT3	Active-low interrupt input 3. Connect to V_{CC} through a pullup resistor.
15	SD3	Serial data 3. Connect to V _{CC} through a pullup resistor.
16	SC3	Serial clock 3. Connect to V_{CC} through a pullup resistor.
17	INT	Active-low interrupt output. Connect to V_{CC} through a pullup resistor.
18	SCL	Serial clock line. Connect to V _{CC} through a pullup resistor.
19	SDA	Serial data line. Connect to V_{CC} through a pullup resistor.
20	V _{CC}	Supply power

TCA9545A SCPS204 – JANUARY 2014

Sepcifications

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT
V _{CC}	Supply voltage range			-0.5	7	V
VI	Input voltage range ⁽²⁾			-0.5	7	V
l _l	Input current				±20	mA
lo	Output current				±25	mA
	Continuous current through V_{CC}				±100	mA
	Continuous current through GND				±100	mA
θ_{JA}	Package thermal impedance ⁽³⁾	PW	backage		83	°C/W
P _{tot}	Total power dissipation				400	mW
T _{stg}	Storage temperature range			-65	150	°C
T _A	Operating free-air temperature range			-40	85	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		1.65	5.5	V
V	н High-level input voltage	SCL, SDA	$0.7 \times V_{CC}$	6	V
VIH	High-level input voltage	A1, A0, ĪNT3–ĪNT0, RESET	$0.7 \times V_{CC}$	V _{CC} + 0.5	v
V	Low-level input voltage	SCL, SDA	-0.5	$0.3 \times V_{CC}$	V
VIL		A1, A0, INT3-INT0, RESET	-0.5	$0.3 \times V_{CC}$	v
T _A	Operating free-air temperature		-40	85	°C

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

TCA9545A

SCPS204 – JANUARY 2014

www.ti.com

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETEI		TEST C	ONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{POR}	Power-on reset v	oltage ⁽²⁾	No load,	$V_I = V_{CC}$ or GND	1.65 V to 5.5 V		1	1.4	V
					5 V		3.6		
					4.5 V to 5.5 V	2.6		4.5	
					3.3 V		1.9		
				1001	3 V to 3.6 V	1.6		2.8	
V _{pass}	Switch output voi	Switch output voltage		$I_{SWout} = -100 \ \mu A$	2.5 V		1.5		V
					2.3 V to 2.7 V	1.1		2	
				-	1.8 V		1.1		
					1.65 V to 1.95 V	0.9		1.25	
I _{OH}	INT		$V_{O} = V_{CC}$		1.65 V to 5.5 V			10	μA
			V _{OL} = 0.4 V			3	7		
I _{OL}	SCL, SDA	SCL, SDA			1.65 V to 5.5 V	6	10		mA
	INT		V _{OL} = 0.6 V V _{OL} = 0.4 V		-	3			
	SCL, SDA							±1	
	SC3-SC0, SD3-	SD0						±1	
I _I	A1, A0		$V_I = V_{CC}$ or GND		1.65 V to 5.5 V			±1	μA
	INT3-INT0	INT3-INT0						±1	
	RESET							±1	
					5.5 V		50	80	
					3.6 V		20	35	
		$f_{SCL} = 400 \text{ kHz}$	$V_{I} = V_{CC} \text{ or } GND I_{O}$	$I_{O} = 0$	2.7 V		11	20	
					1.65 V		6	10	
	Operating mode				5.5 V		3	12	-μΑ
		f _{SCL} = 100 kHz	$V_1 = V_{CC}$ or GND		3.6 V		3	11	
				I _O = 0	2.7 V		3	10	
					1.65 V		2	4	
I _{CC}					5.5 V		0.3	2	
					3.6 V		0.1	2	
		Low inputs	$V_I = GND$	$I_{O} = 0$	2.7 V		0.1	1	
					1.65 V		0.1	1	
	Standby mode				5.5 V		0.3	2	
			., .,		3.6 V		0.1	2	
		High inputs	$V_I = V_{CC}$	$I_{O} = 0$	2.7 V		0.1	1	
					1.65 V		0.1	1	
			One INT3-INT0 Other inputs at \				8	15	
A1	Supply-current	INT3-INT0	One INT3–INT0 input at $V_{CC} = 0.6 V$, Other inputs at V_{CC} or GND		1.65 V to 5.5 V		8	15	μΑ
ΔI _{CC}	change			SCL or SDA input at 0.6 V, Other inputs at V _{CC} or GND			8	15	
		SCL, SDA		SCL or SDA input at $V_{CC} - 0.6 V$, Other inputs at V_{CC} or GND			8	15	
	A1, A0						4.5	6	
Ci	INT3-INT0		$V_{I} = V_{CC}$ or GND		1.65 V to 5.5 V		4.5	6	pF
	RESET						4.5	5.5	

(1) All typical values are at nominal supply voltage (1.8-V, 2.5-V, 3.3-V, or 5-V V_{CC}), $T_A = 25^{\circ}C$. (2) The power-on reset circuit resets the I²C bus logic with V_{CC} < V_{POR}. V_{CC} must be lowered to 0.2 V to reset the device.

Electrical Characteristics (continued)

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CO	TEST CONDITIONS		MIN TYP ⁽¹⁾ MAX		UNIT	
C: (3)	SCL, SDA		Switch OFF	1.65 V to 5.5 V		15	19	ъF
C _{io(OFF)} ⁽³⁾	SC3–SC0, SD3–SD0	$V_{I} = V_{CC}$ or GND				6	8	pF
ł	Switch on-state resistance	V _O = 0.4 V	l _O = 15 mA	4.5 V to 5.5 V	4	9	16	
D				3 V to 3.6 V	5	11	20	
R _{ON}		V _O = 0.4 V	l _O = 10 mA	2.3 V to 2.7 V	7	16	45	Ω
				1.65 V to 1.95 V	10	25	70	

(3) C_{io(ON)} depends on the device capacitance and load that is downstream from the device.

I²C Interface Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			STANDARD I ² C BL		FAST MODE I ² C BUS		UNIT
			MIN	MAX	MIN	MAX	
f _{scl}	I ² C clock frequency		0	100	0	400	kHz
t _{sch}	I ² C clock high time		4		0.6		μs
t _{scl}	I ² C clock low time	² C clock low time			1.3		μs
t _{sp}	I ² C spike time		50		50	ns	
t _{sds}	I ² C serial-data setup time		250		100		ns
t _{sdh}	I ² C serial-data hold time		0 ⁽¹⁾		0 ⁽¹⁾		μs
t _{icr}	I ² C input rise time			1000	20 + 0.1C _b ⁽²⁾	300	ns
t _{icf}	I ² C input fall time			300	20 + 0.1C _b ⁽²⁾	300	ns
t _{ocf}	I ² C output fall time	10-pF to 400-pF bus		300	20 + 0.1C _b ⁽²⁾	300	ns
t _{buf}	I ² C bus free time between stop an	d start	4.7		1.3		μs
t _{sts}	I ² C start or repeated start conditio	n setup	4.7		0.6		μs
t _{sth}	I ² C start or repeated start conditio	n hold	4		0.6		μs
t _{sps}	I ² C stop condition setup		4		0.6		μs
t _{vdL(Data)}	Valid-data time (high to low) $^{(3)}$	SCL low to SDA output low valid		1		1	μs
t _{vdH(Data)}	Valid-data time (low to high) $^{(3)}$	SCL low to SDA output high valid		0.6		0.6	μs
t _{vd(ack)}	Valid-data time of ACK condition	ACK signal from SCL low to SDA output low		1		1	μs
Cb	I ² C bus capacitive load			400		400	pF

(1) A device internally must provide a hold time of at least 300 ns for the SDA signal (referred to as the V_{IH} min of the SCL signal), in order to bridge the undefined region of the falling edge of SCL.

(2)

 C_b = total bus capacitance of one bus line in pF Data taken using a 1-k Ω pullup resistor and 50-pF load (see Figure 1) (3)

TCA9545A

SCPS204-JANUARY 2014

www.ti.com

STRUMENTS

EXAS

Switching Characteristics

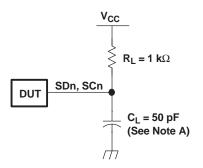
over recommended operating free-air temperature range, C_L ≤ 100 pF (unless otherwise noted) (see Figure 3)

	PARAMET	ER	FROM (INPUT)	TO (OUTPUT)	MIN MAX	UNIT
t _{pd} ⁽¹⁾	Propagation delay time	R_{ON} = 20 Ω , C_L = 15 pF	SDA or SCL	SDn or SCn	0.3	ns
•pd	r topagation delay time	R_{ON} = 20 Ω , C_L = 50 pF	ODA OF OCE		1	115
t _{i∨}	Interrupt valid time ⁽²⁾		INTn	INT	4	μs
t _{ir}	Interrupt reset delay time ⁽²⁾		INTn	INT	2	μs

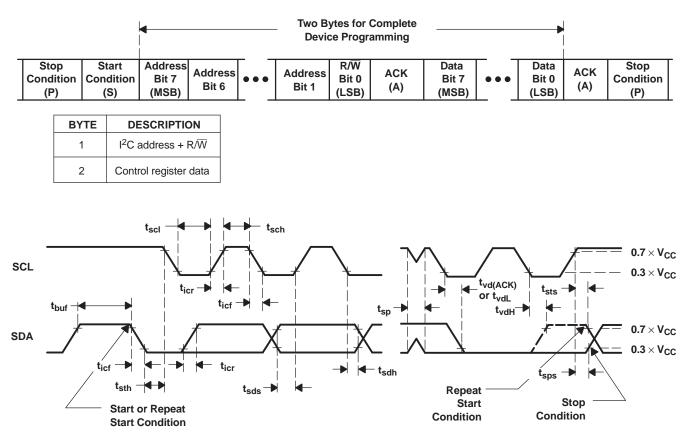
(1) The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

(2) Data taken using a $4.7 \cdot k\Omega$ pullup resistor and 100-pF load (see Figure 3)

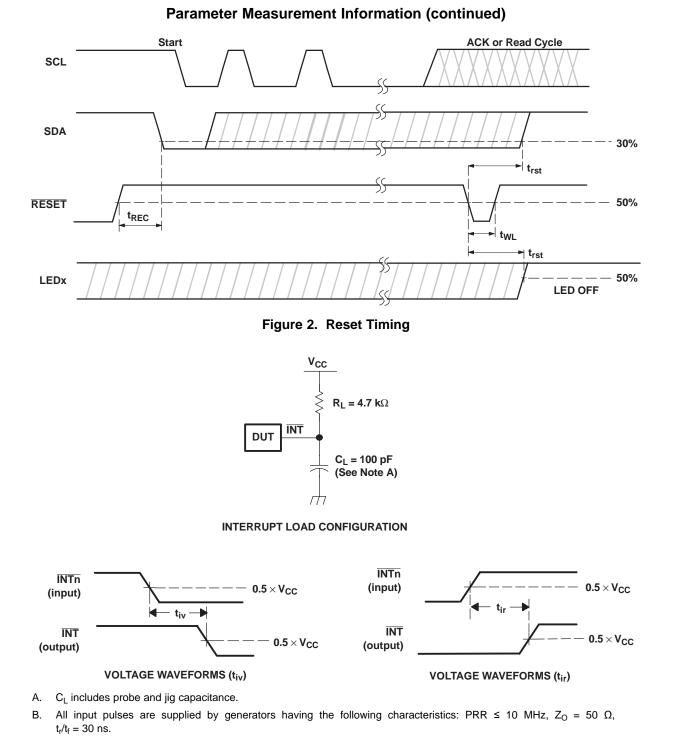
Interrupt and Reset Timing Requirements


over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

	PARAMETER	MIN	MAX	UNIT
t _{PWRL}	Low-level pulse duration rejection of INTn inputs	1		μs
t _{PWRH}	High-level pulse duration rejection of INTn inputs	0.5		μs
t _{WL}	Pulse duration, RESET low	6		ns
t _{rst} ⁽¹⁾	RESET time (SDA clear)		500	ns
t _{REC(STA)}	Recovery time from RESET to start	0		ns


(1) t_{rst} is the propagation delay measured from the time the RESET pin is first asserted low to the time the SDA pin is asserted high, signaling a stop condition. It must be a minimum of t_{WL} .

Parameter Measurement Information


I²C PORT LOAD CONFIGURATION

VOLTAGE WAVEFORMS

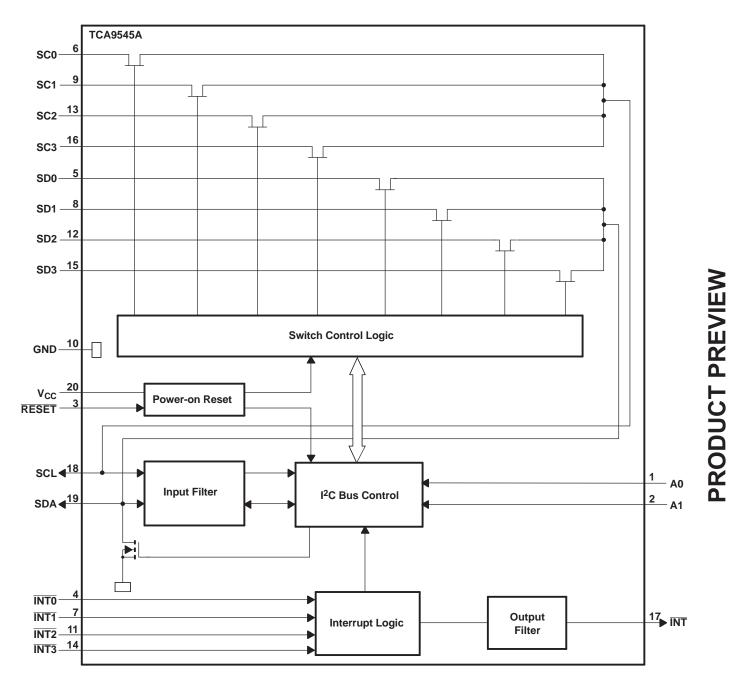
- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω, t_r/t_f = 30 ns.
- C. The outputs are measured one at a time, with one transition per measurement.

Figure 1. I²C Interface Load Circuit, Byte Descriptions, and Voltage Waveforms

Figure 3. Interrupt Load Circuit and Voltage Waveforms

Submit Documentation Feedback

8


Texas Instruments

www.ti.com

Detailed Description

Functional Block Diagram

Device Address

Following a start condition, the bus master must output the address of the slave it is accessing. The address of the TCA9545A is shown in Figure 4. To conserve power, no internal pullup resistors are incorporated on the hardware-selectable address pins, and they must be pulled high or low.

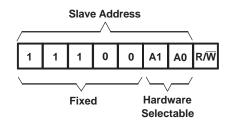
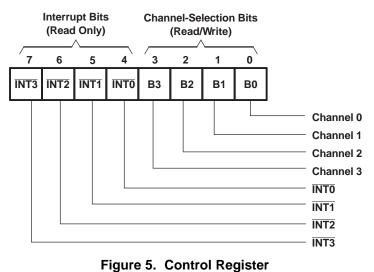



Figure 4. TCA9545A Address

The last bit of the slave address defines the operation to be performed. When set to a logic 1, a read is selected, while a logic 0 selects a write operation.

Control Register

Following the successful acknowledgment of the slave address, the bus master sends a byte to the TCA9545A, which is stored in the control register (see Figure 5). If multiple bytes are received by the TCA9545A, it saves the last byte received. This register can be written and read via the I²C bus.

Control Register Definition

One or several SCn/SDn downstream pairs, or channels, are selected by the contents of the control register (see Table 1). After the TCA9545A has been addressed, the control register is written. The four LSBs of the control byte are used to determine which channel or channels are to be selected. When a channel is selected, the channel becomes active after a stop condition has been placed on the l²C bus. This ensures that all SCn/SDn lines are in a high state when the channel is made active, so that no false conditions are generated at the time of connection. A stop condition must occur always right after the acknowledge cycle.

Table 1. Control Register Write (Channel Selection), Control Register Read (Channel Status)											
INT3	INT2	INT1	INTO	D3	B2	B1	B0	COMMAND			
V	V	V	V	х	V	V	0	Channel 0 disabled			
Х	X	Х	Х	~	Х	X	1	Channel 0 enabled			
х	x	х	х	х	х	0	x	Channel 1 disabled			
~	^	^	~	^	^	1	^	Channel 1 enabled			
V	V	V	V	V	0	V	V	Channel 2 disabled			
Х	Х	Х	Х	Х	1	X	Х	Channel 2 enabled			
V	x	х	х	0	V	V	V	Channel 3 disabled			
Х	X	X	X	1	X	X	Х	Channel 3 enabled			
0	0	0	0	0	0	Х	0	No channel selected, power-up/reset default state			

Table 1. Control Register Write (Channel Selection), Control Register Read (Channel Status)⁽¹⁾

(1) Several channels can be enabled at the same time. For example, B3 = 0, B2 = 1, B1 = 1, B0 = 0 means that channels 0 and 3 are disabled, and channels 1 are 2 and enabled. Care should be taken not to exceed the maximum bus capacity.

Interrupt Handling

The TCA9545A provides four interrupt inputs (one for each channel) and one open-drain interrupt output (see Table 2). When an interrupt is generated by any device, it is detected by the TCA9545A and the interrupt output is driven low. The channel does not need to be active for detection of the interrupt. A bit also is set in the control register.

Bits 4–7 of the control register correspond to channels 0–3 of the TCA9545A, respectively. Therefore, if an interrupt is generated by any device connected to channel 1, the state of the interrupt inputs is loaded into the control register when a read is accomplished. Likewise, an interrupt on any device connected to channel 0 would cause bit 4 of the control register to be set on the read. The master then can address the TCA9545A and read the contents of the control register to determine which channel contains the device generating the interrupt. The master then can reconfigure the TCA9545A to select this channel and locate the device generating the interrupt and clear it.

It should be noted that more than one device can provide an interrupt on a channel, so it is up to the master to ensure that all devices on a channel are interrogated for an interrupt.

The interrupt inputs can be used as general-purpose inputs if the interrupt function is not required.

If unused, interrupt input(s) must be connected to V_{CC} .

				•	•	• •		
INT3	INT2	INT1	INT0	D3	B2	B1	B0	COMMAND
V	V	V	0	v	V	V	v	No interrupt on channel 0
Х	X	X	1	Х	Х	Х	Х	Interrupt on channel 0
V	V	0	v	v	v	v	v	No interrupt on channel 1
Х	^	1	Х	^	Х	Х	^	Interrupt on channel 1
V	0	v	V	v	V	V	v	No interrupt on channel 2
Х	1	X	Х	~	Х	Х	~	Interrupt on channel 2
0	v	V	х	v	х	х	v	No interrupt on channel 3
1	^	X	~	~	~	X	~	Interrupt on channel 3

Table 2. Control Register Read (Interrupt)⁽¹⁾

(1) Several interrupts can be active at the same time. For example, $\overline{INT3} = 0$, $\overline{INT2} = 1$, $\overline{INT1} = 1$, $\overline{INT0} = 0$ means that there is no interrupt on channels 0 and 3, and there is interrupt on channels 1 and 2.

RESET Input

The $\overline{\text{RESET}}$ input can be used to recover the TCA9545A from a bus-fault condition. The registers and the I²C state machine within this device initialize to their default states if this signal is asserted low for a minimum of t_{WL}. All channels also are deselected in this case. RESET must be connected to V_{CC} through a pullup resistor.

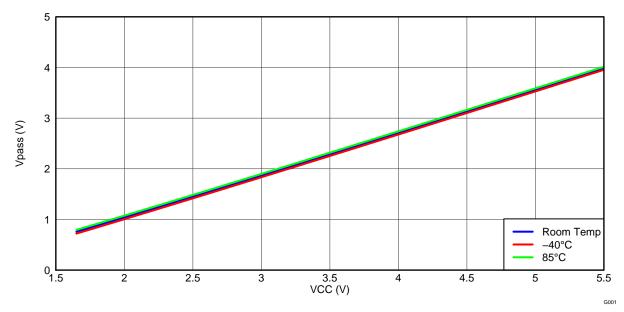
Power-On Reset

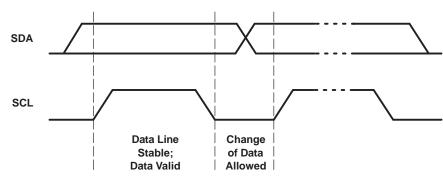
When power is applied to V_{CC} , an internal power-on reset holds the TCA9545A in a reset condition until V_{CC} has reached V_{POR} . At this point, the reset condition is released and the TCA9545A registers and I²C state machine are initialized to their default states, all zeroes, causing all the channels to be deselected. Thereafter, V_{CC} must be lowered below at least V_{POR} to reset the device.

Voltage Translation

The pass-gate transistors of the TCA9545A are constructed such that the V_{CC} voltage can be used to limit the maximum voltage that is passed from one I^2C bus to another.

Figure 6 shows the voltage characteristics of the pass-gate transistors (note that the graph was generated using data specified in the *electrical characteristics* section of this data sheet). In order for the TCA9545A to act as a voltage translator, the V_{pass} voltage must be equal to or lower than the lowest bus voltage. For example, if the main bus is running at 5 V and the downstream buses are 3.3 V and 2.7 V, V_{pass} must be equal to or below 2.7 V to effectively clamp the downstream bus voltages. As shown in Figure 6, V_{pass} (max) is 2.7 V when the TCA9545A supply voltage is 4 V or lower, so the TCA9545A supply voltage could be set to 3.3 V. Pullup resistors then can be used to bring the bus voltages to their appropriate levels (see Figure 13).




Figure 6. Pass-Gate Voltage (V_{pass}) vs Supply Voltage (V_{CC}) at Three Temperature Points

I²C Interface

The I²C bus is for two-way two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pullup resistor when connected to the output stages of a device. Data transfer can be initiated only when the bus is not busy.

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high period of the clock pulse, as changes in the data line at this time are interpreted as control signals (see Figure 7).

Both data and clock lines remain high when the bus is not busy. A high-to-low transition of the data line while the clock is high is defined as the start condition (S). A low-to-high transition of the data line while the clock is high is defined as the stop condition (P) (see Figure 8).

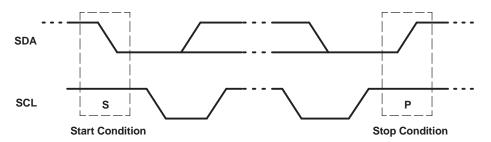


Figure 8. Definition of Start and Stop Conditions

A device generating a message is a transmitter; a device receiving a message is the receiver. The device that controls the message is the master, and the devices that are controlled by the master are the slaves (see Figure 9).

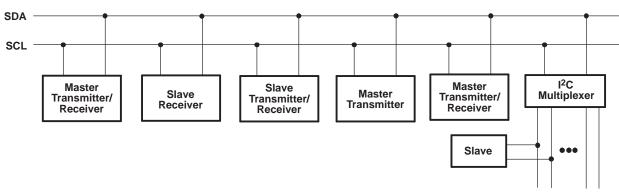
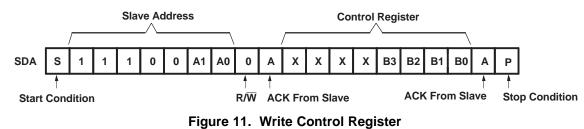


Figure 9. System Configuration

The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowlege (ACK) bit. The transmitter must release the SDA line before the receiver can send an ACK bit.


When a slave receiver is addressed, it must generate an ACK after the reception of each byte. Also, a master must generate an ACK after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 10). Setup and hold times must be taken into account.

NSTRUMENTS TCA9545A SCPS204-JANUARY 2014 www.ti.com Data Output by Transmitter NACK Data Output by Receiver ACK SCL From 2 8 9 Master S **Clock Pulse for ACK** Start Condition

A master receiver must signal an end of data to the transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line high. In this event, the transmitter must release the data line to enable the master to generate a stop condition.

Data is transmitted to the TCA9545A control register using the write mode shown in Figure 11.

Data is read from the TCA9545A control register using the read mode shown in Figure 12.

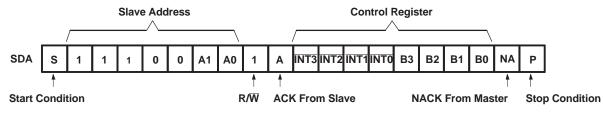
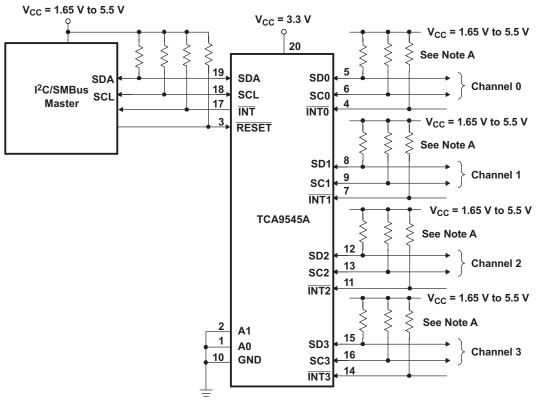


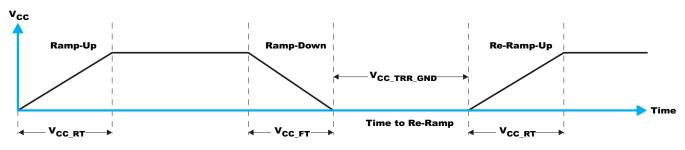
Figure 12. Read Control Register

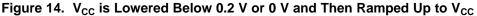

EXAS

TCA9545A SCPS204 – JANUARY 2014

APPLICATION INFORMATION

Figure 13 shows an application in which the TCA9545A can be used.


- A. If the device generating the interrupt has an open-drain output structure or can be 3-stated, a pullup resistor is required. If the device generating the interrupt has a totem-pole output structure and cannot be 3-stated, a pullup resistor is not required. The interrupt inputs should not be left floating.
- B. Pin numbers shown are for PW package.


Figure 13. Typical Application

Power-On Reset Requirements

In the event of a glitch or data corruption, TCA9545A can be reset to its default conditions by using the power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This reset also happens when the device is powered on for the first time in an application.

The two types of power-on reset are shown in Figure 14 and Figure 15.

TEXAS INSTRUMENTS

www.ti.com

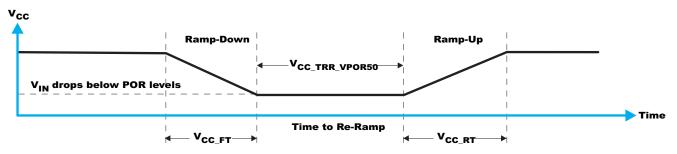
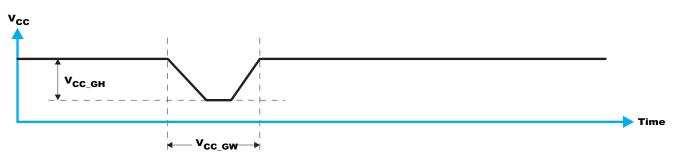


Figure 15. V_{CC} is Lowered Below the POR Threshold, Then Ramped Back Up to V_{CC}

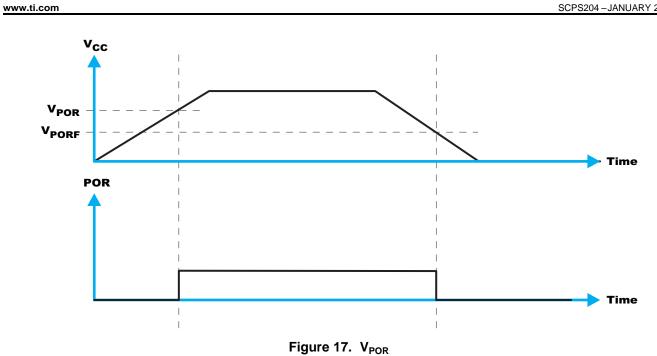

Table 3 specifies the performance of the power-on reset feature for TCA9545A for both types of power-on reset.

	PARAMETER		MIN	TYP	MAX	UNIT
V _{CC_FT}	Fall rate	See Figure 14	1		100	ms
V _{CC_RT}	Rise rate	See Figure 14	0.1		100	ms
V _{CC_TRR_GND}	Time to re-ramp (when V _{CC} drops to GND)	See Figure 14	40			μs
V _{CC_TRR_POR50}	Time to re-ramp (when V_{CC} drops to $V_{POR_MIN} - 50$ mV)	See Figure 15	40			μs
V _{CC_GH}	Level that V_{CCP} can glitch down to, but not cause a functional disruption when V_{CCX_GW} = 1 μs	See Figure 16			1.2	V
V _{CC_GW}	Glitch width that will not cause a functional disruption when $V_{CCX_GH} = 0.5 \times V_{CCx}$	See Figure 16			10	μs
V _{PORF}	Voltage trip point of POR on falling V _{CC}		0.767		1.144	V
V _{PORR}	Voltage trip point of POR on fising V _{CC}		1.033		1.428	V

Table 3. Recommended Supply Sequencing And Ramp Rates⁽¹⁾

(1) $T_A = -40^{\circ}C$ to 85°C (unless otherwise noted)

Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width (V_{CC_GW}) and height (V_{CC_GH}) are dependent on each other. The bypass capacitance, source impedance, and device impedance are factors that affect power-on reset performance. Figure 16 and Table 3 provide more information on how to measure these specifications.



 V_{POR} is critical to the power-on reset. V_{POR} is the voltage level at which the reset condition is released and all the registers and the I²C/SMBus state machine are initialized to their default states. The value of V_{POR} differs based on the V_{CC} being lowered to or from 0. Figure 17 and Table 3 provide more details on this specification.

Package Option Addendum

Packaging Information

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾	Op Temp (°C)	Device Marking ⁽⁴⁾⁽⁵⁾
TCA9545APWR	PREVIEW	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PW545A

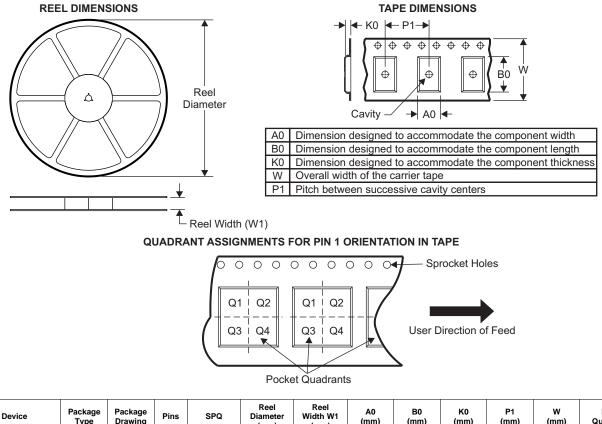
(1) The marketing status values are defined as follows:

- ACTIVE: Product device recommended for new designs.
- LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.
- (2) Eco Plan The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
 - TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

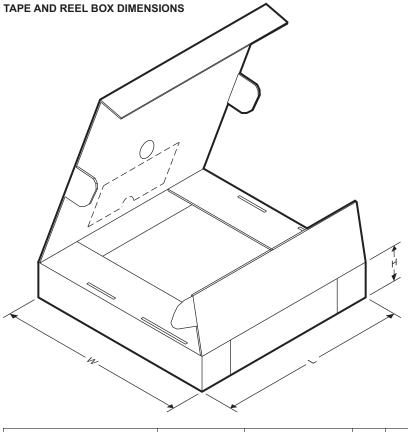
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
- (5) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION


Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant	
TCA9545APWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1	

TCA9545A

SCPS204-JANUARY 2014

www.ti.com

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TCA9545APWR	TSSOP	PW	20	2000	367.0	367.0	38.0

5-Feb-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TCA9545APWR	PREVIEW	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

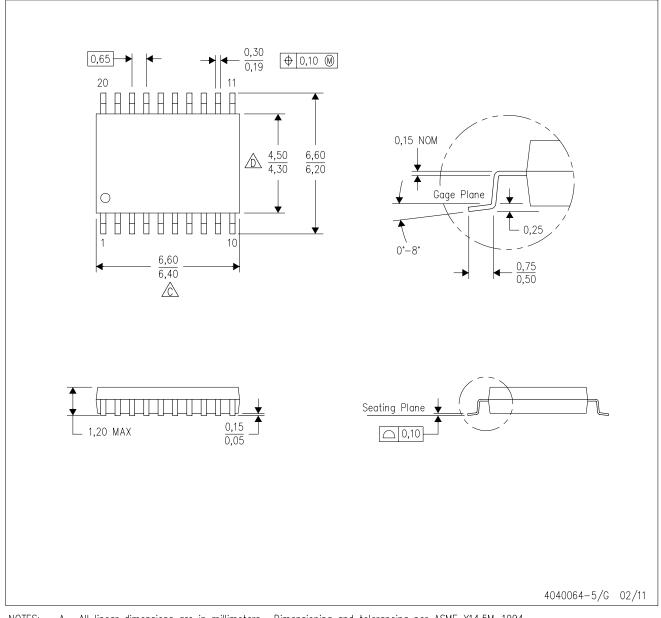
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



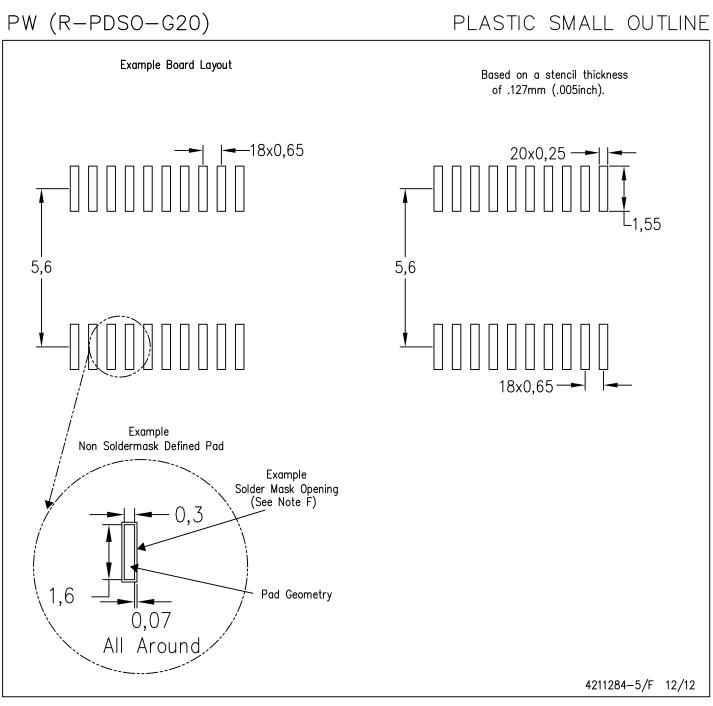
PACKAGE OPTION ADDENDUM

5-Feb-2014

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:


A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated